Arabic Handwritten Alphanumeric Character Recognition Using Very Deep Neural Network

نویسندگان

  • MohammedAli Mudhsh
  • Rolla Almodfer
چکیده

The traditional algorithms for recognizing handwritten alphanumeric characters are dependent on hand-designed features. In recent days, deep learning techniques have brought about new breakthrough technology for pattern recognition applications, especially for handwritten recognition. However, deeper networks are needed to deliver state-of-the-art results in this area. In this paper, inspired by the success of the very deep state-of-the-art VGGNet, we propose Alphanumeric VGG net for Arabic handwritten alphanumeric character recognition. Alphanumeric VGG net is constructed by thirteen convolutional layers, two max-pooling layers, and three fully-connected layers. The proposed model is fast and reliable, which improves the classification performance. Besides, this model has also reduced the overall complexity of VGGNet. We evaluated our approach on two benchmarking databases. We have achieved very promising results, with a validation accuracy of 99.66% for the ADBase database and 97.32% for the HACDB database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Arabic Handwritten Alphanumeric Character Recognition using Fuzzy Attributed Turning Functions

In this paper, we present a novel method for recognition of unconstrained handwritten Arabic alphanumeric characters. The algorithm binarizes the character image, smoothes it and extracts its contour. A novel approach for polygonal approximation of handwritten character contours is applied. The directions and length features are extracted from the polygonal approximation. These features are use...

متن کامل

Arabic Handwritten Characters Recognition using Convolutional Neural Network

Handwritten Arabic character recognition systems face several challenges, including the unlimited variation in human handwriting and large public databases. In this work, we model a deep learning architecture that can be effectively apply to recognizing Arabic handwritten characters. A Convolutional Neural Network (CNN) is a special type of feed-forward multilayer trained in supervised mode. Th...

متن کامل

Handwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns

The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...

متن کامل

Applying Data Augmentation to Handwritten Arabic Numeral Recognition Using Deep Learning Neural Networks

Handwritten character recognition has been the center of research and a benchmark problem in the sector of pattern recognition and artificial intelligence, and it continues to be a challenging research topic. Due to its enormous application many works have been done in this field focusing on different languages. Arabic, being a diversified language has a huge scope of research with potential ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Information

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017